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Abstract: Efficient drug delivery is essential for many therapeutic
applications. Some cell-penetrating peptides, peptide mimetics, and
peptoids express transport function that, however, lack in most cases
specific intracellular destination. In this study, carrier-peptoids with
either amino or guanidinium side chains, were investigated with regard
to their cellular uptake, toxicity, and intracellular localization. Transport
specifically to the cytosol or to the nuclei was observed, thus providing
a powerful tool for targeted drug delivery.

It has been well-known for several decades that some peptides
with basic amino acid residues are taken up rapidly by cells in
culture.1–9 Initial assays suggested that these peptides could
directly traverse the plasma membrane by an unknown mech-
anism, independent of classical receptor-mediated pathways.
Some of these peptides were discovered as basic domains
responsible for the translocation of naturally transduced proteins
and were, therefore, referred to as protein transduction domains
(PTDsa).10–12 They can transport into the cell covalently attached
cargo molecules of diverse chemical nature (oligonucleotides,
proteins, fluorophores, PNAs, and even liposomes or nanopar-
ticles). Many peptides composed of R-amino acids (1, Figure
1) with the same properties were discovered or designed since
then and are described as a functional group by the term cell-
penetrating peptides (CPPs).10–12

The most important structural features for cellular uptake
efficiency of CPPs appear to be the short size (i), high content
of cationic residues (ii), and variable spacing between the
charges (iii), while the backbone conformation does not seem
to play a critical role.10–12 However, the bioavailability of CPPs
is usually low due to in vivo proteolysis. Therefore, short peptide
mimetics with modified backbones, carrying basic functionalities
such as amino or guanidinium groups, may serve as a valuable
alternative to the CPPs because of their enhanced stability in
vivo.

Proteolytically stable �-peptides (2, Figure 1), for example,
have been under intensive investigation during the past years13

and were shown to be efficiently internalized by cultured
mammalian cells.3

Peptoids (oligo-N-alkylglycines; 3, Figure 1) are stable against
proteases, like �-peptides, but usually are less prone to

aggregation.3,14,15 In contrast to both R- and �-peptides, the side
chains of peptoids are attached to the nitrogen atom instead of
the carbon, therefore, they lack hydrogen-bonding potential,
which prevents backbone-driven aggregation and thus increases
bioavailability.3,14,15

The use of peptoids as effective, water-soluble nontoxic
molecular transporters for intracellular drug delivery or as
molecular probes for bioconjugation has also been reported.16–21

Peptoids with guanidinium head groups attached to alkyl chains
have also been used to mimic peptide-hormones, antibiotics,
and receptor–ligands.16–20

The comparison of oligo(poly)-lysine (Lys)n and oligo(poly)-
arginine (Arg)n peptides has also been under investigation.3,22–24

It was demonstrated that (Arg)n shows faster uptake than (Lys)n.
Moreover, it seems that major penetration pathways may differ
for (Arg)n and (Lys)n.23,25 Notably, if CPPs are constructed with
a single type of cationic side chain, cellular uptake efficiency
usually decreases in the following order: Arg > Lys > Orn >
His.

Here we translate those findings to peptoid molecules and
compare the carrier potency of peptoids with amino side chains
(amino-peptoids) against peptoids with guanidinium side chains
(guanidinium-peptoids). Syntheses, toxicity, and cellular uptake
are reported. We observe transport to the cytosol or to the nuclei,
depending on the choice of the side-chain functionality. To our
knowledge, the possibility of determining the intracellular
destination without only additional localization signal is reported
for the first time, thus providing a powerful tool for targeted
drug delivery.

For the experiments, a fluorescently labeled homohexameric
peptoid with amino-group carrying side chains was compared
with two peptoids carrying guanidinium side chains, assembled
as a homopenta- or hexamer.

The building blocks were prepared starting from 1,6-
diaminohexane following a slightly modified procedure of
Bradley et al.15a and Liskamp et al. (for the reaction scheme,
see Supporting Information).18a,21 The protected and function-
alized building blocks were assembled on the solid-phase
(Scheme 1). The reactions were carried out using Rink amide
resin 4 as a result of its stability and ease of the first coupling
step. The synthesis of the backbone was completed by coupling
a fluorophore. The labels, 5(6)-carboxyfluorescein (Figure 2,
9a, Fluo, λabs ) 492 nm, λem ) 517 nm) or rhodamine-B (Figure
2, 9b, Rhod, λabs ) 550 nm, λem ) 580 nm), were attached to
peptoids prior to cleavage from the solid support. A spacer (6-
aminohexanoic acid) was used to prevent interactions of the
marker with the peptoid moiety (Scheme 1). To isolate the
amino-peptoid Fluo-{6,6,6,6,6,6}-NH2 10, it was simultaneously
deprotected and cleaved from the resin by using trifluoroacetic
acid (TFA)/triisopropyl silane (TIS; Scheme 2). The molecule
was precipitated in cold diethylether, filtered off, and dried in
vacuo.21 It was characterized by mass spectrometry, UV/vis,
and IR. Before the guanidinium-peptoids Rhod-{6G,6G,6G,6G,6G}-
NH2 11 and Fluo-{6G,6G,6G,6G,6G,6G}-NH2 12 could be cleaved
from the solid support, they had to be orthogonally deprotected
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Figure 1. Structures of the backbone of an R-peptide (1), �-peptide
(2), and a peptoid (3).
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and the free amino side chains were transformed to guanidinium
groups. Finally, the guanidinium-peptoids were cleaved from
the resin (Schemes 3 and 4), isolated, and characterized
following the procedure of 10. All peptoids were purified by
HPLC (purity >95%; for method see SI).

To test the cellular uptake of the peptoids, FACS analysis
was performed. The uptake was measured as increase in the
number of fluorescent cells. The uptake of the molecules after
incubation for 10, 30, and 60 min and at three concentrations
(50, 100, 200 µM) was tested on the adherent cell lines from
human epithelial lung cancer (A549)26 and normal human
endothelia (ECV304).27 For the results of the ECV304 cells,
see SI. A clear concentration and time-dependent increase in
peptoid-associated fluorescence was detected for both cell lines
(Figure 4). For the highest concentration of peptoids (200 µM)
after 10 min incubation already 90% of the cells could be
detected by FACS for 11 and 12, while only 32% of the cells
were detected if incubated with 10. Thus, uptake rates for
guanidinium-peptoids are higher than for the amino-peptoid.

Furthermore, as can be seen from Figure 3, the amino-peptoid
10 accumulates preferentially in the cytosol (cytosolic staining),
whereas the fluorescence from guanidinium-peptoids 11 and 12
is mainly associated with the cell nuclei and even with the
nucleoli (Figure 3 and SI). We did not observe any profound
differences in either uptake rate or in intracellular distribution
between 11 and 12. Therefore, in our case, the attached
fluorophore had no influence on the diverse destinations inside
the cell in contrast to previously reported examples.3,22–24 Only
a slight difference is noted in the intensities due to the lower
light extinction coefficient of 5(6)-carboxyfluorescein 9a (for
more information, e.g., the uptake in tabular form, see SI).

Thus, a differential transport to the cytosol (amino-peptoid
10) and to the nucleus (guanidinium-peptoids 11 and 12, Figure
3) could be observed. Note that the guanidinium-peptoids do
not exclusively accumulate in the nucleous, but preferentially.
The results for the uptake efficiency confirm previous findings
with (Arg)n and (Lys)n peptides23,24 and can be explained
analogously, suggesting an uptake by macropinocytosis for the
amino-peptoid and direct membrane transduction for the guani-
dinium-peptoids.

To verify that the synthesized peptoids could be used for in
vivo applications and to check that the faster uptake of carriers
11 and 12 is not due to cell membrane damage or perforation,
their toxicity toward mammalian cells was investigated. To do
so, the peptoids were tested in different established cytotoxicity
assays. For an independent cross-check, two tests based on
different detection principles were carried out. The WST-1 test
detects only the viable cells by examination of the intracellular
reduction potential, whereas the LDH test detects exclusively
dead cells.21,28–30

Scheme 1. Solid Phase Synthesis of Peptoids, Attachment of the
Spacer (6-Aminohexanoidc Acid), and Labeling with the
Fluorophore 5(6)-Carboxyfluorescein 9a or Rhodamine-B 9ba

a Reagents and conditions: (a) 20% piperidine in DMF, 3 × 2 min; (b)
3.00 equiv monomer, 2.00 equiv PyBrOP, 4.00 equiv DIPEA, CH2Cl2, rt,
24 h; (c) 3.00 equiv Fmoc-aminohexanoic acid, 2.00 equiv PyBrOP, 4.00
equiv DIPEA in CH2Cl2, rt, 24 h; (d) 3.00 equiv 5(6)-carboxyfluorescein,
3.00 equiv HOBt, 3.00 equiv DIC in DMF/CH2Cl2 (1:1), rt, 5 h; (e) 3.00
equiv rhodamine-B, CH2Cl2, rt, 4 d.21

Figure 2. Structures of the fluorophores 5(6)-carboxyfluorescein 9a
and rhodamine-B 9b.

Scheme 2. Cleavage of Amino-peptoid Fluo-{6,6,6,6,6,6}-NH2

10a

a Reagents and conditions: (a) TFA/TIS (95:5), rt, 3 h.

Scheme 3. Deprotection, Formation of the Guanidinium Groups,
and Cleavage from the Solid Support of Guanidinium-peptoid
Rhod-{6G,6G,6G,6G,6G}-NH2 11a

a Reagents and conditions: (a) 2-mercaptoethanol/DBU (0.3 M in DMF),
3 times 45 min; (b) 10.0 equiv 1H-pyrazole-1-carboxamidine hydrochloride,
10.0 equiv DIPEA, DMF, rt, 24 h; (c) TFA/TIS (95:5), rt, 3 h.

Scheme 4. Deprotection, Formation of the Guanidinium Groups,
and Cleavage from the Solid Support of the
Guanidinium-peptoid Fluo-{6G,6G,6G,6G,6G,6G}-NH2 12a

a Reaction conditions are identical to those described in Scheme 3.
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As can be seen from Figure 5, over a prolonged incubation
time (48 h), the viability of A549 cells in the presence of the
two peptoids 10 and 12 did slightly decrease only for
concentrations above 100 µM and 150 µM, respectively.
Interestingly, the shorter guanidinium-peptoid 11 showed an

overall higher toxicity and was the only one where viability of
the cells dropped below 50% (at concentrations equal to and
above 150 µM). To examine whether the observed toxicity for
the highest concentrations could be associated with the coupled
fluorophore, the viability tests were performed with the fluo-
rophore-free peptoids {6G,6G,6G,6G,6G}-NH2 (11 w/o) and
{6,6,6,6,6,6}-NH2 (10 w/o; see SI). It can be seen (Figure 5)
that such an assumption was right, as after a 48 h incubation
time with the same high concentrations of peptoids, indeed the
cell viability was restored or even improved. Performing the
WST-1 test on the ECV304 cell line as well as an LDH assay
on the A549 cells, very similar results are obtained for all the
tested peptoids (see SI).

In conclusion, the synthesis of guanidinylated peptoids and
biological studies of these carriers are presented compared to a
peptoid with amino side chains. We have investigated these
efficient carrier systems with respect to their toxicity, cellular
uptake, and destination within the cells. It is demonstrated here
that both systems did not show any significant toxicity. The
guanidinium-peptoids caused a decrease in the viability of
sensitive cell lines only at high concentrations and after long
incubation times, and this effect seems to be due to the coupled
fluorophore. All peptoids translocated into the cells and are,
therefore, useful as carriers for drug delivery. However, certain
differences in the uptake related to the cationic moiety are
present. First, the amino-peptoid requires longer times to
complete translocation into the cell, while the uptake rate for
the guanidinium-peptoids is much faster, presumably due to a
different translocation mechanism.23–25 Second, intracellular
accumulation of the peptoids is different; the amino-peptoid
resides in the cytosol, while the guanidinium-peptoids ac-
cumulate preferentially in the nucleus. Thus, the uptake rate
and destination of the carriers can be tuned by just modifying
the side chain functionality and does not require any additional
leading motif. Low cytotoxicity and high stability makes the
molecules based on the peptoidic backbone attractive candidates
for in vivo intracellular drug delivery. Further applications are
in progress.

Peptoid-carriers selectively deliver the cargo either to the
cytosol (amino-peptoid) or to the cell nucleous (guanidinium-
peptoid) were synthesized and shown to be a promising tool
for the use in drug delivery.
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